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Parallel Genomic and Chemical Screens to Identify both Therapeutic Targets, and Inhibitors of 

these Targets, in the Treatment of Neurofibromatosis. 

 

Introduction 

   Neurofibromatosis type I (NF1) results following mutations in the Nf1 gene which encodes a Ras 

GTPase activating protein (RasGAP), whereas the rarer disorder Neurofibromatosis type II results 

following loss of function mutations in the Nf2/merlin gene.  In healthy organisms, Nf1 regulates cell 

growth and proliferation through the modulation of Ras (1), and loss of Nf1 leads to tumor formation due 

to the subsequent hyperactivation of Ras (2). Nf2/merlin promotes the establishment of cell polarity, cell-

cell junctions, and of adherence structures that link the cell to the extracellular matrix (ECM). Mutations 

in Nf2/merlin contribute to the progression of NF2 disease by desensitizing the proliferation and 

migratory machineries to the inhibitory signals that emanate from neighboring cells and the ECM (3). 

However to date there is not a complete understanding as to identity or function of the specific signaling 

proteins that act upstream or downstream of Nf1 and Nf2. 

  

 Using high-throughput cell-based RNAi screens, our laboratory has systematically elucidated the 

majority, if not all, of the components involved in canonical signaling pathways such as the Wnt, 

Hedgehog (Hh), MAPK, and JAK-STAT pathways (4-7). Each particular screen made use of unique 

experimental readouts of pathway activity. For example, in the case of Wnt, Hh, or JAK-STAT screens , 

we monitored transcription of luciferase reporter genes placed downstream of pathway-specific promoters 

(4-6). Alternatively, to identify MAPK components, we monitored phosphorylation of ERK protein (7). 

We reasoned that although genome-wide RNAi screens could also be used to identify components of Nf1 

and Nf2/merlin regulated signaling pathways, we first had to develop an experimental readout of Nf1 

and/or Nf2 activity. 
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Body 

Aim 1: Describe the phenotype of Drosophila S2R+ and cells and Kc cells which have been treated 

with dsRNA targeting Drosophila Nf1 and Nf2 genes. 

Aim 1a ) Determine if inhibition of Nf1 and/or Nf2 leads to changes in the phosphorylation state of 

MAPK as compared to untreated cells.  

Given the well-established role of Nf1 in regulating Ras signaling, and the increase in 

MAPK/ERK phosphorylation observed in Nf1-deficient flies (8), we expected to observe increased 

phosphorylation of MAPK/ERK following inhibition of Nf1. Furthermore, increases in MAPK signaling 

are also a characteristic of Nf2-deficient tumor cell lines (9). However we did not observe that RNAi of 

either Drosophila Nf1 or Nf2 significantly increased or decreased the levels of phosphorylated Drosophila 

MAPK/ERK in S2R+ or Kc cells lines in either starved or stimulated conditions (7).  

 

b) Determine if inhibition of Nf1 and/or Nf2 leads alterations in cellular morphology.  

 As dysregulation of Nf1 and Nf2 signaling leads to tumorigenesis which typically involves 

alterations in cell and tissue morphology, we used conventional fluorescence microscopy to analyze the 

phenotype of GFP-transfected Drosophila cells where Nf1 or Nf2/merlin genes are silenced by dsRNA. 

However, unlike the MAPK/ERK studies performed in Aim 1a, we inhibited Nf1 or Nf2 by RNAi in 

Drosophila BG-2 cells. Control/wild-type BG-2 cells are a highly motile cell line that resemble 

mammalian fibroblast cells in that during migration cells exhibit a polarized leading edge with extensive 

lamellipodial protrusions (Figure 1A). In addition, BG-2 cells coordinate the formation of lamellipodia 

with retraction of the cell body at the rear of the moving cell (Figure 1A). We observed that silencing of 

Nf1 and Nf2 by dsRNA dramatically affects the cellular morphology of Drosophila BG-2 cells in similar, 

yet distinct fashions (Figure 1B and 1C). RNAi of Nf1 results in unpolarized cells with defects in 

lamellipodia formation that also appear retracted compared to wild-type cells (Figure 1B). The phenotype 

of BG-2 cells where Nf1 is silenced is remarkably consistent with previous studies of mammalian 
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astrocytes which reported defects in cell spreading, migration, and attachment following a loss of a single 

copy of Nf1 (10). Targeting Nf2 for dsRNA-mediated silencing also results in highly-rounded and 

retracted cells with no lamellipodial protrusions and loss of polarity (Figure 1C). However cells where 

Nf2 is inhibited appear to have no protrusions whatsoever, whereas cell treated with Nf1 dsRNA still have 

a number of filamentous processes (Figure 1B, chevrons). We speculate that silencing Nf2/merlin by 

dsRNA results in round cells with no clear leading edge due to the fact that these cells are unable to form 

proper adhesions to the ECM, a model consistent with the role of Nf2 in regulating the formation of 

adhesive structures (3). Taken together, this data suggests that Nf1 and Nf2 function normally to regulate 

pathways that regulate cellular morphology. 

 

c) Changes in proliferation. 

As well-characterized tumor suppressors we speculated that using dsRNA-mediated gene 

silencing of Nf1 or Nf2 may lead to increased cell proliferation. However, using an assay previously 

developed in our laboratory to accurately determine cell viability and proliferation following the treatment 

of cells with dsRNA targeting genes of interest (11), we did not observe that inhibition of Nf1 or Nf2 in 

Kc, S2R+, or BG-2 cells leads to significant increases, or decreases, in proliferation (Data not shown). 

One potential explanation for our failure to detect increased levels of proliferation following dsRNA-

mediated silencing of Nf1 or Nf2 is that transient inhibition of these genes in tissue culture cells is not 

sufficient to induce similar increases in proliferation as observed when these genes are deleted in NF 

patients or model organisms (3, 12). 
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Aim 2: Perform genome-wide screen for dsRNAs which result in reversion of the phenotypes 

observed following RNAi of Nf1 or Nf2. 

 

 We observed that inhibiting Nf1 and Nf2 by dsRNA dramatically affected the cellular morphology 

of Drosophila BG-2 cells in highly diverse fashions (Figure 1). As such we reasoned that we could 

perform large-scale genetic screens for genes that suppressed, enhanced, or altered the morphological 

phenotype of cells where Nf1 or Nf2 activity is inhibited, and we could begin to determine components of 

Nf1 and Nf2 regulated signaling networks.  

 

 The analysis of cellular phenotypes following the systematic inhibition of genes has been 

extensively used in C. elegans not only to determine genes involved in the regulation of morphology, but 

to model networks of functionally related genes (13, 14). Furthermore, our own lab has performed large-

scale studies to identify Drosophila genes involved in the regulation of cell shape (15). However, all these 

studies performed to date have been qualitative in nature as individual cellular phenotypes and 

morphologies were observed, and interpreted by, human experimentalists. We reasoned that in order to 

perform systematic screens for genes involved mediating the effects on morphology resulting from RNAi 

of Nf1 and Nf2, that such screens must be quantitative in nature. Furthermore, because previous screens 

have involved manually curating thousands of images, which requires a large amount of time, we aimed 

to automate the execution of our experiments and analysis as much as possible. Thus prior to beginning 

a screen for genetic modifiers of Nf1 or Nf2,  we aimed to develop a novel method in order to 

quantify single-cell morphology in an automated fashion.  

 

The major challenge in quantifying morphology is accurately defining cellular boundaries, in an 

automated fashion, in image fields which might contain dozens, if not hundreds of individual cells. Once 

the cell borders have been defined, and “cell segments” created, quantification of the segments is 
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relatively trivial. Therefore in order to obtain accurate segmentation of single-cells, we image and 

segment single-cells that are stochastically labeled with GFP. Stochastic labeling is accomplished by 

transient transfection of BG-2 cells with plasmids encoding GFP, which is relatively inefficient (~15-20% 

of cells become transfected). Although obtaining feature values from GFP-labeled cells versus the entire 

cell population in the image greatly reduces the number of cells analyzed in each treatment, stochastic 

labeling ensures accurate and precise cell segmentation that would otherwise be impossible. Our 

segmentation algorithm uses intensity thresholds to identify cells, and is based on the assumption that 

sharp decreases in intensity levels represent cellular boundaries. We further refined the segmentation used 

for the analysis by creating CellSegmenter, a GUI whereby a user can manually adjust intensity 

thresholds until they accurately match the boundaries of the cell, separate two or more distinct cells which 

have been erroneously defined as a single cell by the algorithm, and select cell segments that are 

considered good representations of cellular boundaries (Figure 2A). Thus, while the segmentation 

procedure is not fully automated, we feel that this method ensures a data set of very high quality. We 

quantified approximately 150 different features for individual cells that reflected basic aspects of cell 

geometry, detailed aspects of cellular protrusions, or the distribution of GFP intensity within the cellular 

boundaries (Figure 2B). Following segmentation and quantification, single cell data is used to calculate 

mean feature values for the condition of interest. Each vector of 150 different features is termed a 

“phenotypic signature”. 

 

In order to test our methods, we generated a dataset comprised of 249 different conditions 

corresponding to: (1) The overexpression by transient transfection of 20 different RFP-tagged mutant 

forms of Rho GTPases, RhoGEFs, kinases, and other regulators of the microtubule and actin 

cytoskeletons. (2) 173 dsRNAs chosen at random from a larger collection of dsRNAs targeting all known 

GTPases, GEF, GAPs, and other genes implicated in cytoskeletal organization. Notably, this collection of 

dsRNA overlaps considerably with the collection of ~900 dsRNAs used by our lab in previous 
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morphological screens (15). (3) An additional 45 dsRNAs targeting the majority of known Drosophila 

RhoGEFs, GAPs, and GTPases (4) Overexpression of an activated form of the RhoGEF Sif/still-life in 

combination with various dsRNAs chosen at random. 

 

Although a phenotypic signature is composed of ~150 different features, we hypothesized that 

only a subset of these features would be informative and useful in further classification of genes and 

conditions. In fact, hierarchical clustering of all conditions by all features does not reveal that 

genes/conditions cluster in meaningful or interpretable fashions (Data not shown). Presumably this is due 

to the fact that the values for many features correlated with each other, and that all features values are not 

relevant to distinguishing different aspects of morphology. Thus, we aimed to reduce the dimensionality 

of the data by using Neural Network based methods  to generate classifiers that represent a non-linear 

function in a multi-dimensional space that segregates the majority of cells from a condition of interest (i.e. 

RacV12 overexpressing cells), from other conditions. Seventeen distinct conditions were chosen for 

analysis based on the fact that their phenotypes were qualitatively distinctive and discernable from control 

cells (Table 1). For example overexpression of an N-terminally truncated form of the RhoGEF still-

life/Sif  (ΔN-Sif), the Drosophila orthologs of mammalian Tiam-1, stimulates extensive lamellipodia 

formation, cell spreading, and a general loss of tension demonstrated by the flat and thin appearance of 

the ΔN-Sif cells. Importantly, we did not attempt to generate classifiers for phenotypes that were not 

qualitatively distinctive from control cells regardless of the construct or dsRNA used (i.e. Cdc42 dsRNA 

treated cells appeared largely similar to control cells). Conversely, we derived classifiers for particular 

states and phenotypes even if little is understood as to the underlying mechanisms that led to the particular 

phenotype. For example, ΔN-RhoGEF3 and CG3799 overexpression each promotes distinctive changes in 

cell morphology, but the specificity of these RhoGEFs for particular GTPase targets is unknown. 
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In order to extract functional grouping of genes from our dataset each cell state is scored using 7/9 

successfully derived classifiers, and subsequently clustered using hierarchical methods. The 7-component 

vector assigned to each cell state is comprised of Z-scores representing how phenotypically similar the 

population of cells of that state are to cells of the state from which each classifier was generated compared 

to an equally sized population of cells chosen at random. We term this Z-score a “certainty of 

classification score”. For example, for cells where CG10188 (a RhoGEF) has been targeted by dsRNA the 

certainty of classification score for the RacF28L classifier is 0.335288, which indicates that CG10188 

dsRNA induces a morphology that is slightly more “RacF28L-like” than an equal number of randomly 

chosen cells.  By contrast, the Z-score for RacF28L cells on the RacF28L classifier is 18.222. The 7 Z-

scores that make up the vectors are certainty of classification scores for the RacV12, RhoF28L, RhoV14, 

RhoF30L, CG3799 full-length, ΔN-Sif, and ΔN-RhoGEF3 classifiers. Although the classifiers trained 

against the combination of RhoV14-RhoF30L and RacV12-RacF28L expressing cells both have 

acceptable levels of sensitivity and specificity, we choose not to include these scores in our clustering due 

to the fact that RhoV14/RhoF30L cells are highly morphological diverse (thus a high score on this 

classifier is largely not interpretable), and that RacV12/RacF28L are highly phenotypically similar (thus 

do not provide information beyond the individual classifiers themselves). 

 

Two-dimensional hierarchical clustering of cell states by the 7 component vector reveals that 

genes fall into several distinct clusters. As expected, genes will similar phenotypes cluster tightly 

together, which strongly validates the methodologies used in this study and highlights the fact that we 

have successfully developed a technique to quantitatively determine and classify cell morphology (Figure 

3). We define “phenoclusters” as genes grouped by having a correlation score of greater than 0.80 (Figure 

3). A correlation of 0.80 was determined based on the fact that clusters defined by correlation scores less 

that 0.80 group phenotypically diverse cells, whereas determining clusters of genes by scores greater that 

0.80 results in phenotypically similar cells falling into separate clusters.  
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We speculate that the genes that are members of particular phenoclusters may act in linear or 

parallel fashion to regulate a common biological function, similar to genetically interacting genes. RNAi 

of Nf2/merlin results in a phenotype that clusters with phenotypes resulting from RNAi of a number of 

known components of Rho signaling pathways such Rho-like, p190RhoGAP, SCAR and RhoGEF3 

(Figure 3B). The finding that the morphology of cells where Nf1 has been silenced is quantitatively 

similar to the morphology following the inhibition of a number of components of Rho GTPase signaling 

pathways is remarkably consistent with previous observations that Nf2 regulates, and is regulated by Rho 

signaling (3). Furthermore, Nf2 RNAi clusters with RNAi of a number of genes known to regulate 

adherence structures such as Gef26 (16, 17), Arm (18), and Ankyrin (19)which supports a model that Nf2 

is involved in the regulation of adherence and inhibition of Nf2 signaling results in a failure of cells to 

attach to the ECM, and consequently induce protrusive activity (Figure 3B). Importantly, these genes 

are excellent candidates for genes involved in the progression of Neurofibromatosis Type II, and 

might represent therapeutic targets for treatment of the disease.  

 

Nf1 RNAi is a member of a related, but quantitatively distinct phenocluster that contains only the 

genes CG1193, CG6017, Rab3, and yurt (Figure 3C). Although the genes are mostly uncharacterized, we 

propose they are also likely involved in regulating similar biological processes as Nf1. Akin to genes that 

cluster with Nf2, we hypothesize these genes are potentially involved in the progression of 

Neurofibromatosis Type I disease. Intriguingly, the mammalian homologs of Drosophila Yurt are FERM 

domain-containing proteins and are highly related to mammalian Nf2/merlin (20, 21), and yurt may 

represent a point of cross-talk between Nf1 and Nf2 signaling pathways. 
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In conclusion, we have developed a novel technology that can be use to rigorously quantify and 

analyze single-cell morphology in an automated fashion. As a proof-of-concept we have analyzed 

morphological data derived from 249 different conditions, and defined phenoclusters of functionally 

related genes. We observe that Nf1 and Nf2 are members of distinct phenoclusters and that other genes in 

these clusters may be highly relevant to understanding role of Nf1 and Nf2 in promoting disease. 

Furthermore, with the successful development of methods to determine quantitative phenotypic 

profiles of cells, performing screen for genetic or chemical, modifiers of Nf1 or Nf2 is now feasible. 
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Key Research Accomplishments 

 

• We have developed a novel system to rigorously quantify and analyze single-cell morphology in 

an automated fashion. This novel technology can be combined with RNAi-based genetic screening 

methods to systematically query the role of genes in the regulation of cell shape, and describe 

functionally related genes. 

 

• We have identified genes functionally related to both Nf1 and Nf2 that represent previously 

unappreciated candidates for genes involved in normal Nf1/Nf2 signaling, and/or Nf1/Nf2-

mediated disease progression. 

 

• The development of technology to derive quantitative phenotypic profiles of cells now facilitates 

the rapid screening for both genes and small-molecules that could modify the phenotype of Nf1 

and Nf2 deficient cells. 
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Reportable Outcomes 

Manuscripts:  

Bakal, C., Aach, J., Church, G.M., and Perrimon, N. “Defining the Components of Local Signaling 

Networks that regulate Cell Morphology using stochastic labeling and Quantitative Morphological 

Signatures” (Manuscript in preparation) 

 

Presentations: 

“Making a RHOad map: modeling the local network of Rho signaling using phenotypic and 

transcriptional profiling”  FASEB Summer Research Conference on Regulation and Function of Small 

GTPases. Saxtons River, VT, USA. July 2006. 

 

“Building a “RHOad map”. Modeling Rho Signaling Networks Through the Integration of High-Content 

Multidimensional Data Sets” Cold Spring Harbor/Wellcome Trust Conference on Interactome Networks. 

Hinxton, UK. August 2006. 
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Conclusions 

Understanding the signaling pathways that regulate, and are regulated by, Nf1 and Nf2 are 

essential in the development of therapeutics to treat patients suffering from diseases that result from loss-

of-function mutations in these diseases. In model systems, such as Drosophila, high-throughput genetic 

and chemical screens have been powerful tools to elucidate both components and inhibitors of a variety of 

signaling pathways. The execution and success of these screens is dependent of the development of 

experimental assays which serve as direct readouts of pathway activity. However, to date no such assay 

for use in high-throughput studies has been developed to monitor the activity of Nf1 or Nf2. Thus prior 

to performing screens for genetic modifiers of Nf1 or Nf2 we aimed to develop an experimental 

readout of Nf1 and Nf2 signaling activity. 

 

In conclusion, we have developed a novel technology that can be used rigorously quantify and 

analyze single-cell morphology in an automated fashion. As a proof-of-concept we have analyzed 

morphological data derived from 249 different conditions, and defined phenoclusters of functionally 

related genes. We observe that Nf1 and Nf2 are members of distinct phenoclusters and that other genes in 

these clusters may be highly relevant to understanding role of Nf1 and Nf2 in promoting disease. 

Furthermore, with the successful development of methods to determine quantitative phenotypic 

profiles of cells, performing screen for genetic or chemical, modifiers of Nf1 or Nf2 is now feasible. 
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Appendicies 

Table 1: Cell states used for classifier determination. Using Neural-Network based approaches we 
attempted to derive non-linear functions that could be used to classify each cell state (left-hand column) 
from the sixteen others in multi-dimensional space. These cell states were chosen for this analysis based 
on the fact they were qualitatively distinguishable. 

Condition/Cell-type Characteristic Phenotype by Visual Inspection 
CG3799 full-length Long, bipolar shaped cells. 
CG3799 RNAi Long, bipolar cells (very similar to overexpression of CG3799) 
GFP Polar cells with leading-edge lamellipodia, long filipodia, and 

marked trailing edge.  
N-RhoGEF3 Very small, often perfectly round cells with little variation 

between cells. 
N-Sif  Very large cells with extensive lamellipodia. 
N-Sif + Sif full-length - 
Rac RNAi Highly retracted cells with long, very thin filaments 
RacF28L  
(Fast-cycling activated Rac) 

Extensive lamellipodia and filipodia formation. Loss of polarity. 
Increase in cell size. 

RacF28L + RacG12V - 
RacG12V 
(GTP-locked activated Rac) 

Extensive lamellipodia formation. Loss of polarity. Increase in 
cells size. 

Rho RNAi Irregularly shaped, often large cells. Typically appeared flat (but 
with few lamellipodia) 

RhoF28L 
(Fast-cycling activated Rho) 

Small compacted cells with jagged, “fuzzy” edges.  

RhoG14V 
(GTP-locked activated Rho) 

Extensive, long and irregular protrusions. Cells body appears 
small and retracted. 

RhoGEF3 RNAi Small round cells. Few protrusions 
RhoV14 + RhoF28L - 
Sif full-length None, appeared similar to control cells 
Sif RNAi Small round cells, sometimes with long filamentous outgrowths 
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Figure 1. Inhibiting Nf1 or Nf2 by dsRNA-mediated gene silencing results in distinct effects on cellular 

morphology. Drosophila BG-2 cells were transfected with plasmids encoding GFP alone (A), in 

combination with Nf1 dsRNA (B), or Nf2 dsRNA (C). Control BG-2 cells typically form extensive 

polarized lamellipodial protrusions at the leading edge of cells (red arrows), and coordinated retraction at 

the trailing edge (green arrows). In cells where Nf1 or Nf2 has been silenced by dsRNA, cells are highly 

rounded, retracted, and unpolarized. However cells where Nf1 is inhibited by dsRNA still have some 

filamentous protrusions (chevrons), whereas inhibition of Nf2 results in a complete absence of any 

protrusive activity. All scale bars represent 10 µm. 
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Figure 2. Phenotypic Profiling workflow. (A) Cultured Drosophila BG-2 cells are transfected with 

plasmids encoding GFP and are incubated in the presence of dsRNA for 4 days. Alternatively GFP-

transfected cells are co-transfected with plasmids encoding RFP-tagged proteins. In some experiments, 

cells were both co-transfected with GFP and RFP-tagged proteins and treated with dsRNA. GFP-labeled 

cells are acquired by standard fluorescence microscopy and the images are processed by CellSegmenter. 

Single cell segments are subsequently analyzed whereupon ~150 different features regarding cell 

morphology and GFP-signal intensity are derived. (B) Typical features that make up phenotypic profiles.  
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Figure 3. The Identification of Local Networks that Regulate Distinct Aspects of Morphology. (A) 

Hierarchical clustering of the genes in the dataset (y-axis) by how cells score on the ΔN-Sif, ΔN-

RhoGEF3, CG3799, RacF28L, RacV12, RhoF30L, and RhoV14 classifiers (x-axis). We define 

phenoclusters of genes as cluster with PCC > 0.80 which results in 41 total clusters comprising 17 multi-

gene clusters and 24 singletons. All multi-gene clusters are identified in brackets on the right-hand side of 

the clustergram. Particular cell-types and their position in the clustergram are shown on the left-hand side. 

Based on their gene membership a number of clusters are determined to have unique roles in cell-

morphology. (B) A phenocluster of genes of which Nf1 is a prominent member (C) A phenocluster of 

genes of which Nf2/merlin is a prominent member. All scale bars represent 10 µm. 
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